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The role of inclusions in the fracture of 
ceramic materials 

A. G. EVANS 
Physical Properties Section, National Bureau of Standards, Washington, D.C., USA 

The stress concentrations that occur at inclusions due to thermal expansion and 
elastic modulus mismatch are discussed and the stress intensity factors at interface 
cracks that result from these stresses are calculated. It is shown that conservative failure 
prediction based on an equivalence between inclusion size and crack size is usually 
acceptable if the shear modulus /~ or thermal expansion coefficient ~ for the inclusion 
is larger than the matrix values. If, however, /z and ~ are smaller for the inclusion than the 
matrix, extensive cracking can develop at the inclusions which may lead to premature 
failure. For this case the only effective methods for failure prediction are techniques 
which give directly the maximum stress intensity factor, i.e., proof testing and/or acoustic 
emission. 

1. Introduction 
Recent studies of fracture in structural ceramic 
materials have concluded that fracture frequently 
originates from inclusions, particularly at the 
critical low strength extreme of the strength 
distribution [1, 2]. Also, the frequency of 
fracture incidence from inclusions increases as 
the component size increases - primarily 
because the probability of locating an inclusion in 
the tensile zone increases. Consequently, fracture 
from inclusions is a major mode of failure in 
ceramic structural components. An appreciation 
of the effect of inclusions on the fracture of these 
materials is thus of critical importance for both 
strength intepretation and failure prediction. It 
is intended in this paper to examine the general 
behaviour of inclusions, and to present analyses 
which may form the basis of an inclusion 
classification scheme. 

Failure prediction procedures which are 
cognizant of the effect of inclusions on fracture 
strength generally involve nondestructive in- 
clusion detection in conjunction with fracture 
mechanics. Then, in principle, it is possible to 
identify, and hence discard, any components 
containing inclusions larger than a certain critical 
size, ae. The magnitude of ae is usually calculated 
from the maximum service stress and the life 
expectancy for the component [3, 4] by assuming 

*Different values for the elastic component of these relations 
distribution of the stresses. 
�9 1974 Chapman and Hall Ltd. 

that the inclusion is equivalent in size to a sharp 
crack with the same maximum dimension; it is 
hoped that this will give a conservative estimate 
of the maximum inclusion size that can be 
tolerated to ensure satisfactory performance. As 
yet, however, the relation between inclusion 
properties and the cracks that are likely to 
develop prior to fracture in the vicinity of the 
inclusion has not been established. This prob- 
lem is examined in this paper in an attempt to 
identify situations where cracks substantially 
larger than the inclusion size may form, which 
might invalidate nondestructive evaluation pro- 
cedures for structural parts, based solely on 
inclusion size and assuming inclusion/crack 
size equivalence, e.g., ultrasonic and radio- 
graphic techniques. 

2. Stress concentrations around 
inclusions 

Localized stresses can occur around inclusions 
due to differences in the thermal expansion and 
the elastic properties of the inclusion and matrix. 
A difference in thermal expansion coefficient 
between inclusion and matrix results in spheri- 
cally symmetric stresses at spherical inclusions 
[5, 6]. The stresses in the matrix, for an isotropic 
linear elastic continuum, are given by;* 

have been reported [7], but these do not affect the spatial 
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( ~ -  ~ m ) ( T ~  - 7") 
17rr = (1 + Vm)/2Em + (1 - 2vi)/Ei (1) 

(O~m - -  o q ) ( T f  - -  T )  

%0 = 2[(1 + Vm)/2Em + (1 - 2vi)/Ei] (2) 

where O~m,i, ym,i and E~,t are the expansion 
coefficients, Poisson's  ratio and Young ' s  modulus  
for the matrix and inclusion, respectively, Tf is 
the fabrication temperature and T the ambient  
temperature, R is the inclusion radius, and r is the 
distance f rom the centre o f  the inclusion. The 
stresses in the inclusion are essentially hydrostatic 
and given by;  ~r = /~. 

T 
% 

i 
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\ 
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Figure 1 The co-ordinate system used to evaluate the 
mechanical stresses around inclusions. 

A difference in elastic constants between 
inclusion and matrix results in stress con- 
centrations related to the applied stress, aa. 
These stresses are more  complex than the thermal 
stresses and for  simplicity we shall only consider 
the two dimensional case, i.e., cylindrical 
inclusions. For  this case (Fig. 1), the matrix 
stresses for a homogeneous  system are [8]; 

178, 
17,-r = ~- (1 + cos 20) 
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(3) 

170. 
1700 = "~ (1 - cos 20) (4) 

where, 

A (1 - 2v,)/*m - (1 - 2Vm) /xi 
4[(1 -- 2vi) /Zm + bq] 

/ * m -  /~i 
4[/*m + (3 -- 4Vm) /*i] '  

and 

B = 

A/B = {1 - 2vi + 2(Fi//Xm)[4ViVrn -- Vm 
-- 3vi + 1] 
- (/*i//*ra) 2 [3 - 6Vm - 4vi + 8V~Vm]} 

/[1 - 2vi + 2(/*fftZm) vi - (/zi//Zm) 2] 

whe re / ,  is the shear modulus.  In  the two limits, 
i.e., a void, and a rigid inclusion respectively, A 
is 1/4 and - ( 1  - 2vm)/4 and B is 1/4 and 
- 1 / 4 ( 3  - 4Vm). It  is also noted that  since 0.15 

v ~ . 0 . 3 5 ,  then 1 < A/B ~. 1.6, so that  the 
quantities A and B are always similar in mag- 
nitude. The stresses within the inclusion are [8]: 

17a 
17rr = ~ (1 + cos 20) (5) 

+ 217a [F/(1 - 2vi) + G cos 20] 
17a 

~o0 = ~ (1 - cos 20) (6) 

+ 217a [/7/(1 - 2vi) - (G + 6Hr 2) cos 20] 

where F, G and H are constants which depend 
on the elastic constants of  the inclusion and 
matrix. 

I t  is noted that  A and B are positive for low 
modulus  inclusions (tzi ~ tZm). Hence, for these 
inclusions, the tangential tensile stresses, 170o, 
are larger than the applied stress, 17a, in the 
orientation 0 = 90~ whereas in the orientation 
0 = 0, the tangential stresses are compressive 
near the interface, but  become tensile further  
into the matrix. For  high modulus inclusions 
(/*i ~ Fro), A and B are negative. Thus the 
tangential stresses are still tensile, but  < 17a, 
for 0 = 90~ whilst the stresses at 0 = 0 are 
tensile near the interface, and become com-  
pressive further into the matrix. The radial 
stress concentrations are much smaller than the 
tangential and the trends with orientation depend 
on the relative magnitudes o f  A and B. 

3. Stress intensity factors for interface 
cracks 

The stress concentrations associated with in- 



THE ROLE OF I N C L U S I O N S  IN THE F R A C T U R E  OF C E R A M I C  M A T E R I A L S  

clusions are only likely to affect the fracture 
behaviour of the host material if cracks develop 
(comparable in size to the inclusion), due to 
these stresses, in the vicinity of the inclusion. In 
brittle materials these cracks could form from 
small pre-existing defects at, or near, the 
inclusion/matrix interface. The incidence of 
crack development will be determined by the 
magnitude of the stress intensity factor, K, at the 
small interfacial defects. If K exceeds the critical 
value Kc for the matrix or inclusion, then the 
cracks will propagate (and probably arrest) 
thereby developing into macrocracks. In this 
section, approximate K values are determined as 
a function of the interface defect size for the 
various types of stress concentration considered 
in the preceding section. 

cry(x) 

INCLUSION ~x 

ACK 

Figure 2 The co-ordinate system used to evaluate the 
stress intensity factor for a crack in a variable stress field. 

The stress intensity factor for a crack in a 
variable stress field can be determined directly 
from the orthogonal stress that existed along the 
fracture plane prior to crack formation [9]. For 
a through crack of length a [10] (see Fig. 2) 

K : \art~ Jo (a - - -~  dx (7) 

provided that a is very much smaller than the 
specimen (component) dimensions. Values for 
K can thus be evaluated to a first approximation 
by substituting the stress fields around the 
inclusions into this relation and integrating over 
the crack length. This neglects any perturbations 
of the applied stress field ay(X) caused by the 
crack and therefore can only be used as an 
approximation for small cracks occurring near, 
or at, the interface (a ~ 0.2R). 

3.1. Thermal stress 
When the expansion coefficient for the inclusion 
is larger than the matrix value, the radial stresses 
that form while cooling from the fabrication 
temperature are tensile, tTrr > 0, and circum- 
ferential cracks tends to form, usually in the 
interface or in the matrix [11 ]. To a first approxi- 
mation, therefore, the cracks propagate at 
constant stress, depending on the location of the 
defect, and hence K is given simply by: 

where the subscript T, denotes the thermal origin 
of the stress intensity factor. 

INTERFACE t a'y [~) 

*'g~ \ \  

"~z, x.\ I~ TENSION 
INCLUSION ~i \~ 

L ~  CRACK 

Figure 3 The thermal stresses acting on a crack extending 
into an inclusion and the co-ordinate system used to 
estimate the stress intensity factor. 

When the expansion coefficient of the in- 
clusion is less than the matrix coefficient, the 
tangential stresses that develop on cooling are 
tensile and cracks tend to propagate away from 
the inclusion through the matrix and, occa- 
sionally, through the inclusion (see Fig. 3). The 
stress intensity factors for cracks adjacent to the 
interface may be evaluated, to a useful first 
approximation, if it is considered that the cracks 
are through cracks exposed along their lengths 
to the tangential stresses at any equatorial plane 
through the inclusion (Equation 2). At the end 
of the crack farthest from the inclusion (x in 
Fig. 2); 

K T =  \rra/ -2 o (a-- x) { d x .  (9) 

Expanding (x/R + 
grating gives; 

1) -a as a series and inte- 
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K:r = ~ (-~)' [1 - ~ (R) (10) 

+ 4 \ R ]  - - ~  + " "  " 

The terms beyond (a/R) can, in fact, be neglected 
because the solution is only valid for small a/R 
( ~  0.2). 

If  the crack propagates into the inclusion, the 
part of the crack in the inclusion is under 
compressive stress (Fig. 3) so that, if we assume 
an elastic continuum; 

(a2 - x )  ~ d x  - 2 

x - t -  
dx] (11) I~, (a2 --- x )  ~ 

where the first term is due to the tensile stresses 
in the matrix and the second due to the com- 
pressive stress in the inclusion. Integration of 
Equation 1 1 gives; 

a 

K,r= (~_~2)~(~/1 3 ( ~ ) ]  \a2/ - 74 (12) 

- 2 (~2 )  ~ [(1-aJaz)~-tan-l  (a2/a,-1) ~] 

where terms in (al/R) 2, etc. have been neglected. 
Hence, as expected, the magnitude of Kdecreases 
as the crack extends into the inclusion, and 
substantial extension into the inclusion is not 
normally anticipated (unless Kc for the in- 
clusion is abnormally small). 

3.2. Mechanical stress 
The angular dependence of the mechanical 
stresses results in a series of solutions for K, 
depending on crack orientation and location. 
For simplicity it is considered here that the 
cracks will be located in the plane of maximum 
tension, i.e., 0 = 90 ~ for /Xm > /~i and 0 = 0 
for t~m < m (see Fig. 1). 

The magnitude of K due to the tangential 
stresses, or00, is, for 0 = 90~ 

=(2-1" K~ \rra/ as (13) 

ou f~ [1 + 2A(x/R + 1)(a -' +x) r + 1)-']x ~ dx 

where the subscript, M, refers to the mechanical 

1148 

origin of the stress intensity factor. Expanding 
the reciprocal terms in a series and integrating 
gives 

+ 2A (14) 

where terms in (a/R) 2 etc., have again been 
neglected. Similarly, for 0 = 0, 

(2a)�89 KM = aa 2A - 6B (15) 

- 3 ( A - 6 B )  ( R )  ] �9 

Similar solutions can be obtained for the 
radial stresses, but since these are small and 
inhomogeneous complete circumferential crack- 
ing is unlikely; hence, they are not considered 
to play an important role in crack development 
at inclusions. 

4. Crack propagation and arrest 
T h e  interface related cracks will start to pro- 
pagate when K reaches the critical value Kc for 
either the matrix or the inclusion. This con- 
dition can be found by simply substituting the 
appropriate values for Kc in Equations 8 to 15. 
Subsequently, however, the crack may arrest 
if it extends into a decreasing stress field. Thus, 
radial cracks are usually expected to arrest; 
whereas circumferential cracks may proceed to 
completion. Consider, as an example, crack 
propagation through the matrix due to tangential 
thermal stresses. For a/R '~ 0.2, Equation 10 can 
be written in terms of Kc as follows; 

f a \  ~* [r K=Kc~a J ;2 / i  0 ] (16) 
where a0 is the initial crack length and • = 
4R/9ao. The K variation represented by this 
relation is shown in Fig. 4. The important 
feature to note is that K tends to decrease at 
large a, resulting in crack arrest (when K ~ Kc 
[11 ], at as in Fig. 4). The crack extension that 
occurs prior to arrest, Aa, may be obtained 
from Equation 16 by solving for a when K = Kc. 
This gives (for a/R < 0.2 or r > 2, the valid 
regime for this solution); 

a0 Aa = a o (4 - 3/4) ~ - ~ (3 - 2r (17) 

Hence, Aa increases as r increases, as indicated 
in Fig. 4. The size of the crack that forms at the 
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Figure 4 The variation of stress intensity factor, K, with 
crack length, a, during rapid propagation and arrest, due 
to propagation in a decreasing stress field. 

inclusion due to thermal stresses can thus be 
found in terms of the initial crack size. 

Equivalent solutions for Aa are obtained for 
the mechanical stresses except that ~ is given at 
the critical stress, ac, by; 

(I + 2A + 6B) R 
- -  ( 1 8 )  

$ = 3(A + 6B) a 0 

for the tangential stress condition with 0 = 90 ~ 

5. The incidence of inclusion cracking 
Generally it is found that the incidence of 
cracking at inclusions increases as the inclusion 
size increases [12], and this feature must be 
incorporated in the analysis of crack develop- 
ment. The effect of inclusion size on crack 
formation has previously been explained [12] 
by noting that the elastic strain energy increases 
more rapidly with inclusion size than the surface 
energy needed for complete circumferential 
cracking; the critical size for cracking is then 
suggested to occur when these two energies are 
approximately equal. This approach does not 
take account, however, of the mechanism for 
crack development, i.e., that K must exceed Kc 
at some small flaw in the vicinity of the inclusion 
matrix interface. An alternative explanation 
that relates to the fracture mechanism is presented 
in this section. 

Some size effect is expected for radial cracking, 
based simply on the effect of inclusion size on 
K (Equations 10 and 14). There appears to be 
an additional size effect, however, because 
circumferential cracking is also dependent on 
inclusion size even though K is approximately 
independent of R (at least when the defects are 

located at a roughly constant relative distance 
from the interface). 

An additional size effect can occur if the 
interface defects exhibit a statistically related 
size distribution. Then, the probability, P, that 
a crack will propagate at a stress, ~, increases 
as the interface area, A, is increased. If we 
assume for example that this probability can be 
fitted to an extreme value distribution of the 
Weibull type, then; 

[_ P =  1 - e x p  \ % ]  AoJ (19) 

where ~o, m and Ao are system constants. 
Substituting A = 4~R 2 and rearranging gives the 
relative fracture probabilities for two different 
inclusion sizes, R1 and R2, at constant stress; 

P2 = 1 - (1 - P1)(R~/R1 )2 (20) 

or, for small P, 

P2 = P1 ( R 2 ~ 2  (21) 
\El " 

A substantial effect of inclusion size on the 
probability of crack development is thus to be 
anticipated from statistical considerations, e.g., 
an order of magnitude increase in inclusion size 
increases the probability by about 102 . 

6. Application to failure prediction 
It is common practice with brittle materials to 
equate the inclusion size (2R) to the critical 
crack size (2a), in order to compute the fracture 
strength (from the stress intensity factor rela- 
tions). This, it is hoped, will provide at least a 
conservative estimate of the strength of com- 
ponents containing inclusions. This hypothesis is 
examined in detail in this section to identify 
situations where strength overestimates may 
result. 

Generally both the expansion coefficients and 
the elastic constants will be different for the 
inclusion and matrix. It is considered for pur- 
poses of discussion that the mechanical and 
thermal stresses superimpose to produce 
cracking. 

When cq > O~m circumferential cracking is the 
primary mode of fracture, as mentioned in 
Section 3.1. Usually the cracks are present in the 
as-fabricated part due to the thermal stress that 
develops on cooling from the fabrication 
temperature; although, occasionally of course, 
small additional mechanical stresses will trigger 
the fracture. In principle, circumferential cracks 

1 1 4 9  
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Figure 5 The measured strength of thoria/glass composites 
[12] compared with the strength calculated by assuming 
equivalence between the thoria sphere size and "penny 
crack" size, and sphere size and "through crack" size. 

are innocuous, but in practice, the cracks 
frequently form an incomplete sphere [12]; then 
it is found that they respond to an applied stress 
in a manner equivalent to sharp "penny" 
cracks, approximately equal in size to the 
inclusion diameter (Fig. 5). The equivalence is 
not exact, and the departures are more severe 
for the small inclusions, presumably because the 
disparity between the crack radius, r, and the 
inclusion radius, R, increases as R decreases. 
However, the consequences of equating the 
inclusion diameter to the crack diameter are not 
severe, and effective failure prediction can be 
achieved using, for example, a "correction" 
factor, 3(1 < 8 ~ 2), to obtain the crack dia- 
meter, i.e., a = 3R. 

When ~i ~ ~r~ only the tangential mechanical 
stresses need be considered. The assumed con- 
dition for strength prediction is conservative 
when KM ~ K (where K is the stress intensity 
factor for an inclusion sized crack, K ~ aa~(rrR)) 
and hence, from Equation 14, when 

(;) �89 [1 + 2A + 6B (22) 

- 3  ( R ) ( A  + 6B)I~R~ 

or, 

( R )  3/~ - [I+2A+6B](R)~~-A-~-6-B-) (23) 

+ 42 
3(A + 6B) > 0.  

This equation may be solved for a/R (using 
conventional cubic solutions) to obtain the 
interface flaw size, a, when K~ = K. For 
flaws larger than this, K• > K and the strength 
prediction is no longer conservative. The 
minimum a which gives KM = K occurs as 
m --+ 0, and for this condition it is found that 
a ~ 0.2 R. The interface flaws need to be 
moderately large, therefore, to cause fracture at 
a stress below that needed to extend an inclusion 
sized crack. Normally, flaws of this relative size 
would be detected during nondestructive in- 
spection (if the inclusion itself is detected). 
Major problems in failure prediction should not 
occur, therefore, for this case; although very 
low modulus inclusions (/~i < 0.1 /Xm) demand 
careful inspection. 

The condition that is liable to present the 
most difficulty occurs when ai < am. Then, 
tangential stresses develop on cooling from the 
fabrication temperature. If these stresses lead to 
the propagation of interface cracks during 
cooling, these will normally extend a substantial 
distance from the inclusion before arrest, as 
discussed in Section 4. These cracks should be 
detected during nondestructive inspection, e.g. 
using ultrasonics, and are accountable for failure 
prediction purposes. However, due to the 
statistical nature of the interface flaw size and the 
flaw size dependence of K (Section 5), certain 
inclusions within the inclusion size range that 
generally develop cracks will remain uncracked 
(with the proportion of uncracked inclusions 
increasing as the inclusion size decreases, 
Equation 21). The uncracked inclusions can, 
however, develop cracks during stress applica- 
tion when the mechanical tensile stresses enhance 
the thermal tensile stresses, i.e., when the 
modulus of the inclusion is less than the matrix 
modulus. Superimposing the thermal and 
mechanical stress (Equations 10 and 14) gives an 
approximate condition for crack formation due 
to combined stressing*; 

*Note that we have used a cylindrical solution for the mechanical stress and a spherical solution for the thermal 
stress, so that direct addition of K~t and KT is not strictly valid; hence, quantitative application of this equation should 
be avoided. 
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Ks = K• + KT ~ aa(1 + 2A + 6B) 

The condition for conservative strength pre- 
diction is again found by putting, Ks < K, 
giving 

- ( a / R )  [3A + 18B + 9fl/Sa,]t < R ~ . 

This relation shows, for quite modest values of 
fl, that KM exceeds K at very small a (~  0.01 R), 
especially for low modulus inclusions. Interface 
flaws in this size range will not be detectable 
using nondestructive inspection techniques, and 
gross strength overestimates (assuming in- 
clusion sized cracks) are entirely possible. 

It is concluded, therefore, that nondestructive 
inspection techniques which involve the detec- 
tion of inclusions (and equate the inclusion size 
to the crack size) cannot provide effective strength 
predictions, when the inclusions consist of low 
modulus and low expansion coefficient material 
(relative to the matrix). For inclusions of this 
type, techniques which give a measure of K 
(or the interface defect size), rather than inclusion 
size, are the only effective methods for failure 
prediction, e.g., proof testing [3] and acoustic 
emission [13]. For high modulus and/or high 
expansion coefficient inclusions, conservative 
predictions of failure from inclusions can 
generally be provided using inclusion size 
detection techniques, such as ultrasonics and 
radiography. (Although the possible existence 
of narrow cracks or incipient cracks, such as 
improperly bonded zones, may still lead to 
premature failures.) 

7. Examples 
Structural applications for brittle materials of 
substantial current interest are in high tempera- 
ture gas turbines, high temperature bearings, etc. 
The two materials which have the most out- 
standing potential for successful application are 
silicon nitride and silicon carbide due to their 
high strength, low expansion coefficient (and 
hence, good resistance to thermal stress damage) 
and good strength retention at elevated tem- 
peratures. Hence, the effect on strength of the 
various inclusion types normally detected in these 

materials, and the potential for failure prediction, 
are discussed. 

Consider first the inclusions in silicon nitride 
(/x = 130 GN m -2, ~ < 4.3 x 10-6~ This 
material can be fabricated to give high strengths 
using hot pressing procedures [14] (usually with 
a magnesium oxide additive). The resultant 
material consists of a fine-grained SiaN~ 
structure with some amorphous phases (due to 
the reaction of MgO, SiaN 4 and other impurities), 
and inclusions introduced during the powder 
preparation, grinding and hot pressing stages 
[15]. Since the host material has relatively low 
values for t~ and ~, most inclusions will not pose 
any major problems for conservative failure 
prediction (presuming, of course, that the 
inclusions can be identified by nondestructive 
inspection). The common inclusions in this 
category are tungsten carbide, boron nitride and 
silicon carbide [1 ]. The only potentially prob- 
lematic inclusions that can currently be identi- 
fied are those derived from the amorphous 
phases, Si (Ca, Mg, A1)O2 [1]. If these phases 
agglomerate to form inclusions of significant 
size, then the very low values for ~ and /~ 
associated with several of the phases could 
result in extensive crack development and 
premature failure (unless proof testing and/or 
acoustic emission can be used for failure 
prediction, as discussed in Section 6). 

Silicon carbide (/~ = 200 GN m -2, c~ < 5.8 
x 10-n~ -1) is also prepared in high strength 

form by hot-pressing, with either aluminium 
oxide [16] or boron [17] additives. Less is known 
about the inclusions in these materials, but the 
larger values of c~ and /~ - compared to silicon 
nitride - suggest that more problematic in- 
clusion types could be encountered. For 
example, inclusions of boron carbide, if present, 
are a potential source of crack development. 

8. Conclusions 
The stresses that develop around inclusions due 
to thermal expansion and elastic modulus 
mismatch are described. The approximate 
magnitude of the stress intensity factors at 
interface cracks due to these localized stresses 
are then evaluated, thereby enabling both the 
propagation and arrest conditions for these 
cracks to be estimated. The potential for using 
nondestructive inspection techniques for failure 
prediction in components which contain in- 
clusions is then assessed, based on this analysis 
of the crack propagation condition. It is con- 
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c luded  tha t  inc lus ion  size de t ec t ion  t echn iques ,  
e.g.,  u l t rasonics ,  r a d i o g r a p h y ,  m a y  be a d e q u a t e  
fo r  h igh  m o d u l u s  a n d / o r  h igh  expans ion  
coeff ic ient  inclusions .  F o r  l o w  e x p a n s i o n  coeffi- 
c ient  and  low m o d u l u s  inc lus ions ,  h o w e v e r ,  these  
t echn iques  are  en t i re ly  i n a d e q u a t e  and  tech-  
n iques  wh ich  d e t e r m i n e  the  m a g n i t u d e  o f  the  
stress in tens i ty  fac tor ,  i.e., p r o o f  tes t ing  a n d / o r  
acous t ic  emiss ion ,  a re  essent ia l  fo r  effect ive 
fa i lure  p red ic t ion .  
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